H(t)=-16t^2+101t+10

Simple and best practice solution for H(t)=-16t^2+101t+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+101t+10 equation:



(H)=-16H^2+101H+10
We move all terms to the left:
(H)-(-16H^2+101H+10)=0
We get rid of parentheses
16H^2-101H+H-10=0
We add all the numbers together, and all the variables
16H^2-100H-10=0
a = 16; b = -100; c = -10;
Δ = b2-4ac
Δ = -1002-4·16·(-10)
Δ = 10640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10640}=\sqrt{16*665}=\sqrt{16}*\sqrt{665}=4\sqrt{665}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-4\sqrt{665}}{2*16}=\frac{100-4\sqrt{665}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+4\sqrt{665}}{2*16}=\frac{100+4\sqrt{665}}{32} $

See similar equations:

| 7=2u-11 | | 2(a+5=18 | | 9x+49=2(x-7) | | 5x-3(x+9)+10=4 | | 9x+42=2(x-7) | | 8x+3+4(6x-2)=7x-6 | | x+2/3=17/12 | | 3n-n=49 | | 7=4+y/3 | | 3x-(2x+3)-4=8 | | 1÷8y=-12 | | 16+17w-12=-10+18w | | x/2-17=30 | | 9-s=s-9 | | 19=v/4-10 | | 30=u/3+15 | | 4=8x=7x=-11 | | 7y-7=-7+6y+6 | | 21−2x=3x−24 | | -7=-7x-5-2 | | -10-6v=5-9v | | 12x+6=-1+13 | | 4r=5r-6 | | 10x-(x-7)=34 | | 7-9f=-10f | | z2+-1(-2+3)*z+(3-(-2))=0 | | -0.8=d+1 | | -v=7-8v | | 5u=6u-4 | | 16+x÷3=-10 | | 16y′′−56y′+49y=0 | | 9z=-7+10z |

Equations solver categories